What is ankylosing spondylitis?

Ankylosing spondylitis (AS) is a painful, progressively debilitating inflammatory disease, the main symptom of which is back pain¹. AS occurs in approximately 1% of the general population and typically affects young men and women aged 25 or older^{2,3}, with two to three times more men affected than women¹.

AS is part of a family of long-term inflammatory diseases called spondyloarthropathies that also includes psoriatic arthritis (PsA)⁴. The causes of AS are not clearly understood but genetic factors seem to be involved^{2,5}. The HLA-B27 gene is associated with a significantly increased risk of developing AS and family members of those with AS are at higher risk of developing the condition⁵⁻⁷.

AS causes high levels of disability

AS usually has a serious impact on movement in the spine, which affects a person's physical functioning and impacts quality of life¹. Up to 70% of patients who go on to develop severe AS will form spinal fusions (where the bones grow together) over 10 to 15 years, which significantly reduces mobility⁸. Chronic fatigue and sleeplessness are also features of AS².

Spine damage in ankylosing spondylitis: Outward curvature of the spine due to fusion of the vertebrae in a man with ankylosing spondylitis.

High levels of disability affect people's ability to work and people with AS are 78% more likely to shorten their working hours than people without the condition, limiting their job options⁸. There is a strong association between the physical impact of AS and anxiety and depression⁹.

AS is also associated with complications such as1:

- Osteoporosis, which occurs in up to half of patients with AS, especially in those whose spine is fused, and it increases the risk of spinal fracture
- Inflammation of the eye, called uveitis: occurs in about 40% of those with spondyloarthritis, and whose symptoms include redness and pain
- Inflammation of the aortic valve, which can occur over time
- Psoriasis, a common, non-contagious inflammatory skin condition characterized by scaly skin
- Intestinal inflammation, which may be severe enough to need treatment

The immune system's role in AS

Interleukin-17A (IL-17A) is one of the many proteins in the body called cytokines that help protect the body against infections¹⁰. Cytokines usually work by signalling to infection-fighting cells that they need to mount an immune response once foreign invaders, such as bacteria or

other disease causing germs, have been detected 10. In inflammatory diseases, IL-17A has been identified as playing a key role in disease development¹¹.

Higher concentrations of IL-17A have been found in areas surrounding the bones and joints in people suffering from AS, particularly in the fluid and lining of the joints¹²⁻¹⁴.

- IL-17A acts as signal to infection-fighting cells, triggering an inflammatory response that results in bone erosion and new bone formation to replace lost elastic tissue in areas surrounding the bones and joints¹⁰.
- Infection fighting cells release IL-17A, causing inflammation and new bone formation¹⁰.

Treatment goals in AS: preventing disability

The long-term consequences of AS are linked to the structural damage and functional loss caused by the disease, which are permanent4. The goals, therefore, of management are to maximise long-term health-related quality of life by reducing patients' levels of pain, improving physical function relative to activities of daily living and work performance, reducing disability, and preventing further deterioration^{4,15}.

Unmet treatment needs in AS

Patients with AS have very few treatment options available to them⁴. For patients who do not respond to non-steroidal anti-inflammatory drugs (NSAIDS), anti-TNF (tumor-necrosis-factor) medicines are the current standard of care, but are not effective for all patients⁴. Approximately 20-40% of patients fail to achieve sufficient clinical improvement on anti-TNFs⁴.

Newer, innovative treatments that specifically target the cytokines that trigger inflammation, such as IL-17A, interrupting the inflammatory cycle in AS have been developed in response to this unmet need. These treatments have shown positive results in the treatment and management of AS16.

References

- 1. Reveille JD. American College of Rheumatology. Spondyloarthritis. Available at: http://www.rheumatology.org/I-Am-A/Patient-Caregiver/Diseases-Conditions/ Spondyloarthritis. Accessed March 2016.
- 2. Sieper J et al. Ankylosing spondylitis: an overview. Ann Rheum Dis 2002; 61 (Suppl III):iii8-iii18.
- 3. Feldtkeller E, Khan M, Van Der Heijde D, et al. Age at disease onset and diagnosis delay in HLA-B27 negative vs. Positive patients with ankylosing spondylitis. Rheumatology International. 2003;23(2):61-66.
- 4. Dougados M, Baeten D. Spondyloarthritis. Lancet 2011; 377(9783):2127-37.
- 5. Brown MA. Progress in studies of the genetics of ankylosing spondylitis. Arthritis Res Ther 2009; 11(5):254.
- 6. Mayo Clinic Website. Ankylovsing spondylitis. Available at: http://www.mayoclinic.org/diseases-conditions/ankylosing.spondylitis/basics/causes/con-20019766. Accessed March 2016.
- 7. Dean LE et al. Global prevalence of ankylosing spondylitis. Rheumatology 2014; 53(4):650-7.
- 8. Barkham N et al. The unmet need for anti-tumour necrosis factor (anti-TNF) therapy in ankylosing spondylitis. Rheumatology 2005; 44(10):1277-81.
- 9. Martindale J et al. Disease and psychological status in ankylosing spondylitis. Rheumatology 2006; 45(10):1288-93.
- 10. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129(3):311-21.
- 11. Kopf M et al. Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 2010; 9(9):703-18.
- 12. Noordenbos T et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondyloarthritis. Arthritis Rheum 2012; 64(1):99-109.

- 13. Taylan A et al. Evaluation of the T helper 17 axis in ankylosing spondylitis. Rheumatol Int 2012; 32(8):2511-2515.
- 14.Mei Y et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumatol 2011; 30(2):269-273.
- 15.Braun J et al. 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis 2011; 70(6):896-904.
- 16.Baeten D et al. Secukinumab, interleukin-17A inhibition in ankylosing spondylitis. N Engl J Med. 2015; 373:2534-48.

